不拘何处有三防求縁此三防作一圜法如甲乙丙三防不在一直线上欲縁此三防作一圜则依前节作甲丙丙乙二线又平分此二线正中作丁己戊己二垂线引长至己处相交遂以己为心以甲乙丙为界作一圜则甲乙丙三防俱在一圜之界矣【此节之理与前节同】
第十五
有圜不知中心求知中心之法如有一甲乙丙丁圜不知其中心欲求知之则于此圜界随便取甲乙丁三处从甲至乙至丁作二?线将此二线平分正中为戊己二处自戊己作戊庚己庚两垂线则相交于庚此庚即是甲乙丙丁圜之中心也【此节之理亦与前同】
第十六
有圜外一防将此防至圜界作切线法如一圜之外有一甲防欲将此甲防与圜界相切作一切线则以此甲防至圜心作一甲乙直线又以乙为心以甲为界作一甲丙圜界又自甲乙线所截圜之丁处作一丁己垂线则此垂线即截甲丙圜界于丙乃自丙至乙心作一丙乙直线复自丙乙所截圜界戊处作一戊甲线即是自甲防至圜界所作之切线也何则此乙丁乙戊既同为一圜之辐线其乙甲乙丙亦同为一圜之辐线则甲乙戊与丙乙丁两三角形之各两边线必等而两三角形又同一乙角然则两三角形之每相当各角必俱等矣【见二卷第六节】夫丁丙线原为甲乙辐线之垂线则丁角必为直角而相当之戊角亦必为直角矣戊角既为直角则甲戊线亦必为乙丙辐线之垂线故甲戊与丙丁皆为圜界之切线也【见四卷第九节】
第十七
有圜内?线欲与此?线平行作圜外切线法如有一甲乙丙丁圜之乙丁?线欲与此乙丁?线平行作切圜之切线则从圜心戊至乙丁?作戊己垂线平分乙丁?线于己引长截圜界于甲为甲戊线又切甲处作庚辛线为甲戊之垂线即是所求之切线也何则此庚辛线既为甲戊线之垂线其戊甲庚角必为直角又己戊线既为乙丁线之垂线其戊己乙角亦必为直角然则戊甲庚角与戊己乙角既俱为直角其度必等因其度等故乙丁庚辛两线为两平行线也又戊甲线为圜之辐线而庚辛既为甲戊之垂线则必为甲乙丙丁圜之切线可知矣【见四卷第九节】
第十八
作函三角形之圜法如甲乙丙三角形欲作函此三角形之一圜则平分甲丙边于丁平分丙乙边于戊自丁戊作二垂线引长至己相交即以己为心任以甲丙乙三角形之一角为界作一甲丙乙庚圜即是函甲丙乙三角形之圜也【此节之理与本卷第十三节同】
第十九