<子部,天文算法类,算书之属,御制数理精蕴>
钦定四库全书
御制数理精蕴下编卷十一
面部一
平方
带纵平方
平方
平方者等边四直角之面积也以形而言则为两矩所合以积而言则为自乗之数因其有广无厚故曰平方因其纵横相等故曰正方葢方积面也而其边则线也有线求面则相乗而得积有面求线则开方而得边开之之法略与归除同但归除有法有实而开方则有实而无法故古人立为商除廉隅之制以相求每积二位得边之一位所谓一百一十定无疑一千三十有零余九千九百不离十一万方为一百推是也其法先从一角而剖其幂以自一至九自乗之数为方根与所有之积相审量其足减者而定之是为初商初商减尽无余则方边止一位若有余实即初商方积外别成一磬折形其附初商之两旁者谓之廉两廉之角所合一小方谓之隅廉有二故倍初商为两廉之共长是为廉法视余积足廉法几倍即是次商隅即次商之自乗故次商为隅法合廉隅而以次商乗之则得两廉一隅之共积所谓初商方积外别成一磬折形者是也故次商为初商所得方边之零如次商数与初商余积相减尚有不尽之实则又成一磬折形而仍为两廉一隅但较前廉愈长而隅愈小耳凡有几层廉隅俱照初商之例逐层递析之实尽而止实不尽者必非自乗之正数递析之至于纎尘终有奇零若余实不足廉隅法之数者则方边为空位此开方之定法也面形不一而容积皆以方积为准故平方为算诸面之本诸面必通之方积而后可施其法也
设如正方面积三十六尺开方问每一边数几何法列方积三十六尺自末位起算每方积二位定方边一位今积止有二位则于六尺上作记定单位以自一至九自乗之方根数与之相审知与六尺自乗之数恰合乃以六尺书于方积六尺之上而以六尺自乗之三十六尺书于方积原数之下相减恰尽即得开方之数为六尺也如图甲乙丙丁正方形每边皆六尺其中函一尺小正方三十六自边计之为六尺自乗之积以积开之则与六尺自乗方根之数相准故商除之恰尽也葢方积为二位是以方边止一位方积即六尺自乗之数故无廉隅之可用次商如有余积则自成廉隅而用次商矣
设如正方面积一丈四十四尺开方问每一边数几何